Marine ice sheet instability
Marine ice sheet instability (MISI) describes the potential for ice sheets grounded below sea level to destabilize in a runaway fashion. The mechanism was first proposed in the 1970s[1][2] by Johannes Weertman and was quickly identified as a means by which even gradual anthropogenic warming could lead to relatively rapid sea level rise.[3][4] In Antarctica, the West Antarctic Ice Sheet, the Aurora Subglacial Basin, and the Wilkes Basin are each grounded below sea level and are inherently subject to MISI.
General
The term marine ice sheet describes an ice sheet whose base rests on ground below sea level, and marine ice sheet instability describes the inherent precarious nature of marine ice sheets due to Archimedes' principle. Because seawater is denser than ice, marine ice sheets can only remain stable where the ice is thick enough for its mass to exceed the mass of the seawater displaced by the ice. In other words, wherever ice exists below sea level, it is held in place only by the weight of overlying ice. As a marine ice sheet melts, the weight of the overlying ice decreases. If melt causes thinning beyond a critical threshold, the overlying ice may no longer be heavy enough to prevent the submarine ice below it from lifting off the ground, allowing water to penetrate underneath.
The location of the grounding line, the boundary between the ice sheet and the floating ice shelves, is unstable in this case. The amount of ice flowing over the grounding line initially matches the production of ice from snow upstream. When the grounding line is pushed backwards, due to for instance melt by warm water, the ice sheet is thicker at the new location of the grounding line and the total amount of ice flowing through may increase. (This depends on the slope of the subaerial surface.) As this causes the ice sheet to lose mass, the grounding line is pushed back even further and this self-reinforcing mechanism is the cause of the instability. Ice sheets of this type have accelerated ice sheet retreat.[5][6]
Strictly speaking the MISI theory is only valid if the ice shelves are free floating and not constrained in an embayment.[7]
The initial perturbation or push-back of the grounding line might be caused by high water temperatures at the base of ice shelves so that melt increases (basal melt). The thinned ice shelves, which earlier stabilized the ice sheet, exert less of an buttressing effect (back stress).[5]
Marine Ice Cliff Instability
A related process known as Marine Ice Cliff Instability (MICI) posits that due to the physical characteristics of ice, subaerial ice cliffs exceeding ~90 meters in height are likely to collapse under their own weight, and could lead to runaway ice sheet retreat in a fashion similar to MISI.[5] For an ice sheet grounded below sea level with an inland-sloping bed, ice cliff failure removes peripheral ice, which then exposes taller, more unstable ice cliffs, further perpetuating the cycle of ice front failure and retreat. Surface melt can further enhance MICI through ponding and hydrofracture.[7][8]
References
- ↑ Weertman, J. (1974) Stability of the Junction of an Ice Sheet and an Ice Shelf Journal of Glaciology
- ↑ Thomas, Robert H.; Bentley, Charles R. (1978) [A Model for Holocene Retreat of the West Antarctic Ice Sheet A Model for Holocene Retreat of the West Antarctic Ice Sheet] Cambridge University Press
- ↑ Mercer, J. H. (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster nature
- ↑ Vaughan, David G. (2008) West Antarctic Ice Sheet collapse – the fall and rise of a paradigm (PDF) DOI
- ↑ 5.0 5.1 5.2 Pollard et al. (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure Earth and Planetary Science Letters
- ↑ David Docquier (2016) Marine Ice Sheet Instability "For Dummies" EGU
- ↑ 7.0 7.1 Pattyn, Frank (2018) The paradigm shift in Antarctic ice sheet modelling Nature Communications
- ↑ Zappa et al. (2018) Basal channels drive active surface hydrology and transverse ice shelf fracture ScienceAdvances